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A tensor theory of gravitation in a curved metric on a flat 
background 

J E Drummondt 
Department of Mathematics, University of Aston in Birmingham, Birmingham, B4 7ET, 
England 

Received 2 October 1978 

Abstract. A theory of gravity is proposed using a tensor potential for the field on a flat 
metric. This potential cannot be isolated by local observations, but some details can be 
deduced from measurements at a distance. The requirement that the field equations for the 
tensor potential shall be deducible from an action integral, that the action and field 
equations are gauge invariant, and, conversely, that the Lagrangian in the action integral 
can be integrated from the field equations leads to Einstein’s field equations. The 
requirement that the field energy-momentum tensor exists leads to a constraint on the 
tensor potential. If the constraint is a differential gauge condition, then it can only be the 
Hilbert condition giving a unique background tensor, metric tensor and tensor potential. 
For a continuous field inside a solid sphere the metric must be homogeneous in the spatial 
coordinates, and the associated field energy-momentum tensor has properties consistent 
with Newtonian dynamics. 

1. Introduction 

R H Dicke on page 211 of DeWitt and DeWitt’s (1964) conference report comments 
that it is remarkable that gravity is interpreted as a manifestation of Riemannian 
geometry whereas all other forces are treated as the effects of particle interactions. This 
is not a serious criticism, since mechanics may be formulated in terms of Newtonian 
force laws, Lagrangian dynamics, Hamiltonians, action integrals or geodesics, and all of 
these formulations are equivalent. In fact Misner er a1 (1973) give on pages 417-28 six 
different ways of deriving Einstein’s equations. 

A more serious objection to Einstein’s theory of gravitation is that it is incomplete 
and deals with parameters or generalised coordinates. Thus both the Schwarzchild and 
homogeneous solutions of the field equations are equally correct and differ only in the 
radial parameter. The two- and three-body problems are also difficult to comprehend 
in generalised coordinates. 

The desire for at least an inertial frame of reference, if not an absolute frame or a flat 
earth, is expressed in the linear Lorentz invariant tensor theories of gravitation by 
Birkhoff (1943,1944) supported by Barajas (1944) and Belinfante and Swihart (1957). 
However, Weyl(1944a, b) shows that a linear tensor theory on flat space-time must be 
a first-order approximation to Einstein’s theory, and the linear theory is inconsistent in 
the second-order terms. 
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1240 J E Drummond 

Gupta (1957) showed that Einstein’s equations could be expanded out as a power 
series on a flat metric, and Deser (1970) sketched a proof that, starting from a flat 
metric, self-consistency led to Einstein’s equations and the non-observability of the 
background metric. 

Roxborough and Tavakol (1978) showed that the particle and field equations of 
general relativity may be expressed in any geometry if the residual terms are interpreted 
as arising from a force field. 

Thirring (1961) gives a non-linear theory of scalar, vector and tensor fields on a flat 
background working with both flat and renormalised space, starting with a field theory 
Lagrangian and a gauge condition, then appealing to Riemannian geometry to choose 
nonlinear terms. Cavalleri and Spinelli (1974a, b, 1975) develop a similar tensor field 
theory, but staying in flat space and developing other aspects of the theory. They finally 
use Deser’s (1970) method to conclude that their theory is equivalent to Einstein’s. 
Petry (1975), on the other hand, gives a linear tensor field theory in flat space with a 
particle equation containing an arbitrary quadratic term not derivable from the field 
equations, so this must be rejected on the grounds of inconsistency. 

The following is a tensor field theory similar to those of Thirring (1961) and 
Cavalleri and Spinelli (1974a, b, 1975), but working in the curved metric and yet giving 
reason for believing that there is a preferred background metric. This background 
metric is not locally observable as was concluded by Deser (1970) and Roxborough and 
Tavakol (1978), but can be deduced from measurements at a distance as described in 
appendix 2 assuming there is a flat outer metric and that a field energy-momentum 
exists. 

2. The equations of motion of a particle 

Of the different forms of mechanics the Lagrangian is fairly central, so let us start with a 
Lagrangian in four-space, 

1 dx’dx’ 1 dx’dx’ dx‘ 
L=-mc bii- -+-mc h,- -++Ai-+zV, 

2 ds ds 2 ds ds ds 

where m is the mass of the particle, q is the electric charge on the particle, and z is the 
measure of some other property associated with the scalar field potential V.  Ai is the 
vector electromagnetic field potential, and hii is a tensor potential which I wish to 
identify as the gravitational field potential. Also c is the fundamental Lorentzian 
velocity (velocity of light in free space), and b,i is the metric tensor of a flat background 
metric such as the Minkowskian diag (c2, -I ,  -1, -1) or a functionally related set of 
coordinates such as spherical polar coordingtes. s is a timelike parameter to be defined 
in 0 2.1. 

In this discussion I wish to concentrate on the tensor potential and do not wish to 
assign any properties to V other than to suggest that it could be the potential of a 
short-range scalar nuclear force such as the Yukawa potential. We could also add to the 
Lagrangian other terms related to the spin and other nuclear properties. 

The properties of the scalar potential have been dealt with by Thirring (1961). The 
properties of the vector potential are covered in a number of textbooks on electromag- 
netism and special relativity and, if we convert from ordinary to covariant derivatives, 
the same formulae may be used in general relativity. 
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In order to write down the Lagrange equations let us assume that bij, hij, Ai and V 
are functions of the four-coordinates, xi, while m, c,q and z are constants. Let 
gii = bii + hii, then the Euler or Lagrange equations are 

These equations may be expanded either as acceleration equations, 

(3) 

or momentum equations, 

* = L m c 2 I t  ag. - dx'dxk -+4. aAidx'  -+*- av 
ds 2 ax' ds ds ax' ds ax" (4) 

where p i  = aL/a(dx'/ds). 

and, for a weak field, ahij/axk -- hijik. The acceleration equations (3) may then be 
written in vector form by transferring some terms across the equation to give a 
generalised acceleration 

Furthermore, if the background metric tensor bij is constant, then ag,,/axk = ahii/ax 

which is equal to 

dxidxk q dx' z -G.  --+-F-+-V. 
ds ds mc2 ii ds mc2 I' 

Ik.1 

where rjk,iis the Christoffelsymbol, G , k , ,  =i(hlj;k -I- hjk;j - hlk;j), Fij = (Aj;i -Ai;'), V, = 

Vi'. The semicolon denotes covariant differentiation using the metric tensor gip 
Similarly the generalised rate of change of momentum is 

1 dx 'dxk dx' -mc hjk;i- -+qA,;i-+ZV;i 
2 ds ds ds 

Here V,  is a vector force field, Fij is the electromagnetic field tensor, and we have a 
similar gravitation tensor Gii,k which is one stage more complicated than F+ Thus, 
while E j  is multiplied by q/mc2 and a velocity to give an acceleration, Gij,k is multiplied 
by the product of two velocities to give an acceleration. 

On the other hand, there are dissimilarities in that A i  never appears in the equations 
of motion, and the identity = Ai;i -AiiJ cannot be solved to find Ai:i. In contrast to 
this, hi' is linked with bij in the coefficient gij, while the identity 

1 
6 r1.k = - (h .  ik; i  '+hjk;i-hij;k) 

can be solved to give us 

hij;k = G k i , j  -I- Gkj,j. 

If also hi' can be separated from bij, as is proposed in 90 4.1 and 4.2, the equations of 
motion may be expressed in terms of Gij.k, hij;k and hip 
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2.1. Definition of s 

So far s is undefined, but if L does not contain s explicitly we have a first integral which is 
the Hamiltonian 

(6 )  
dx' 1 2  dx' dx' 
ds a(dx'/ds) 2 ds ds 

- L = - mc (bi, + hli)- -- z V = constant. H = -  aL 

If we adopt units of length and time, and b,, is the Minkowski metric tensor for some 
outer region where hli and V are both zero, and the fundamental velocity in these units 
is c, we may conveniently standardise s so that ds2 = c2 dt2 - dx2 - dy2 - dr2 .  Hence the 
constant in equation (6) is $mc2, and 

ds2(1i2zV/mc2)=gi ,  dx'dx'. 

It may be noted here that some writers give the mechanical part of the Lagrangian as 

instead of the quadratic form used in equation (l), possibly because this is associated 
with the arc length in the action integral. Also the power series expansion of mc(1- 
u * / c * ) ~ "  for small velocities gives the Newtonian kinetic energy as the first non- 
constant term. However, any action integral of the form 

leads to the same equation of motion independent of n provided n # 0. Also in the form 
of the Lagrangian in equation (1)  the amalgamation of bii + hii occurs most simply if 
n = 1. 

2.2. Non-local observability of the tensor potential 

We started with the hypothesis that there was a flat background metric and a tensor 
potential, and we find that the tensor potential h,, is combined with the background 
metric b,, to form g,, in both the Lagrangian and in the metric equation. The equation of 
motion, however, is somewhat different. It is a vector equation and, as shown by 
Roxborough and Tavakol (1978), it may be arbitrarily separated into two vectors. In 
making our choice we have carried out a non-local act which requires a knowledge of 
the metric, assumed flat, in some distant outer region. We further assumed that h,, = 0 
at a great distance, and that this flat metric could be extended inwards by some 
geometrical construction or by a knowledge of how to correct our measuring rods and 
clocks. Hence we can find h,, if we know g,, and b,, and subtract b,, from g,,. Then we can 
construct the right-hand side of the equation of motion. 

If, however, at this stage we make no restriction on coordinates, then the local 
metric, and hence h,,, is not unique. The proof of this is as follows: Let us make a small 
displacement of coordinates 6' to new coordinates XI*, where XI*  = x' + [ I .  6' is 
arbitrary apart from having bounded derivatives and by being zero at a large distance 
from the world tube containing the material of the universe. Under this transformation 
(see Soper 1976, p 201) the new metric tensor g,,* = g,, -&,,, - t,,, at the displaced field 
point XI*. If 6' is arbitrary but is zero at a large distance, then b,,, being an extension 
from outside, is not altered. Hence we may arbitrarily change h,, to h,, - t,., - 6, ,, if no 
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restriction is placed on 6'. This is a gauge transformation. Thirring (1961) points out 
both the similarity and the difference between this and the gauge transformation in 
electromagnetism, namely that the tensor gauge transformation is linked with the 
coordinate transformation whereas the vector gauge transformation is not. However, 
we shall see in 0 4 that 6' and hii must be restricted. 

3. The general field action 

A simple action integral using only the electromagnetic and gravitational terms has the 
form 

S = I (-8)'" d4x(A2 + A1 - c-'AiJ' -igijT ' j ) ,  (7) 

where A2 is a scalar function of first covariant derivatives of hii, A1 is a scalar function of 
first covariant derivatives of Ai, J' is the electric current vector, and T" is the matter 
energy-momentum tensor. 

Although a background metric tensor bij is postulated, we saw in 0 2.2 that bij does 
not appear in the metric equation. Hence, to be consistent in postulating a physical law 
involving the metric, we must not use bij but must formulate any law involving the 
metric using covariant derivatives and using the general metric tensor gij for all metric 
properties and for raising and lowering of suffixes on tensors. 

Nevertheless, the tensor potential hii will appear in the force and energy terms 
together with its covariant derivatives. The use of the general metric causes some 
complication in reversing second derivatives ( h  i,;ki  may not necessarily be equal to h i j ; lk  

in a general gravitational field), but it avoids some of Thirring's (1961) difficulties in 
mixing coordinate systems and the complication met by Cavalleri and Spinelli 
(1974a, b, 1975) in having to postulate a total energy-momentum tensor T y )  to 
correct for giving the conservation law in the background metric instead of the general 
metric. 

3.1. The action for a particle 

This may be derived from the total field action for any small body in the field by isolating 
that part of the action integral which covers the world track of the small body. 

For the small body Iet 

. .  ,dx'dx' dx ( - g )  1 / 2  d 4 x + d73 ds, T" = pc - -, J' = UC-  and 
ds ds ds 

where p is the mass density, U is the charge density, s is the proper length along the 
centre of the world track, and dTj is an element of volume normal to the track. The total 
mass and charge of the body are then m and 4 where m = 1 p d7, and 4 = 1 U dT3. 

If we set to one side all those terms in the action, including any constant internal 
stress energy of the small body which do not depend on the path, the action in equation 
(7) reduces to 

dx'dx' dx J (i ds ds ds 
- mc gij- - + qAi--) ds 

as was assumed in equation (1). 
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3.2. The linear approximation 

Following Weyl (1944b) we set down the most general scalar function for A2 which is 
quadratic in the first derivatives of the tensor potentials, 

A2 = Ahi,;khi"k + B h i j i k h i k i i  + Chj,khiiik +Dhi,;jhik;k +Eh:;jhik;k, (8) 

and similarly for the electromagnetic field, 

ill  = ~ ~ ~ ; f i ~ ; i +  G A ~ ; ~ ~ J : '  + H A ~ ~ A ! ~  

It should be noted here that if we include any second derivatives these may be 
removed by integration by parts. Thus 

hijh'j;l l(-g) 1 / 2  d 4 x = - hij;lhii"(-g)1'2 d4x hiihii'l dSI. I, 
Hence if the surface integral is taken over some outer boundary, when hij is zero the 
term containing a second derivative, namely hiih in the action integral, may be 
replaced simply by -hij;lhij", and the other possible second derivatives may be 
transformed similarly. 

We may also note that in the linear approximation we can, as in appendix l(iii), 
interchange the partial derivatives so that the terms Ai;f i i t i  and Ai'iA';i and similarly 
h i,;khik;' and hii;'h i k ; k  make, to second-order accuracy, equal contributions to the action 
integral. 

3.3. The electromagnetic field equations 

The electromagnetic equations have been dealt with in a number of textbooks on 
electricity and special relativity and books on field theory, so it suffices to list a few of 
their properties for comparison with the gravitational equations: 

The Langrangian A1 where 

is gauge invariant. 
The field equation (FJ' ) ; j  = (47r/c)J' is gauge invariant. 
The field equation is derivable from the action integral and, conversely, if we 

multiply (F'i);i by the vector potential Ai and integrate by parts, we recover the action 
integral! 

A field energy-momentum tensor exists. 
The electromagnetic field equations are completely expressible in terms of the field 

tensor Fij without the explicit use of the vector potential or its first derivative, 

4. The linearised gravitational field equations 

To obtain a field equation which is linear in hij and contains second derivatives with 
respect to the coordinates we start with an action integral which is quadratic in the first 
derivatives of the hi,. While recognising that this is only basically linear because further 
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terms in hii are also concealed in the gij, we start, omitting the electric terms from 
equation (7), with an action integral 

1 / 2  4 S = I (A2 - $gijT")(-g) d x ,  (9)  

a constant total energy constraint 

M = T(-g)"' d4x, 

and a symmetry constraint hij = hi;, where T = Tii and 142  is given in equation (8). 

appendix 1 (iv) for an extrema1 of S + (2p  + $)M is 
Using Lagrange multipliers for the constraints, the Euler equation as given in 

If we assume that hij is small, delete the quadratic terms, and allow the reversing of 
second derivatives, which according to appendix l(i)  is accurate to first order, then 

aA2/ah i i ; k  = 2Ah '1;' + B ( h  I k  + h j k  ; I )  + 2Cg"h; ' k  

+ ~ ( ~ b h  kl; l  + igikh;:i + ag/kh:;') + E ( g  i k  h i , ; I  + gikhj,;l), 

and the first-order approximations to the ten field equations are 

2Ah'"', +(B +E)(h";',  + hi';ir)+2Cg"h:;mm +D(gi'hrm;m'+ h;'") +;Ti'- pg"T = 0. 
( 1 1 )  

We  may eliminate T from equation ( 1  1 )  by multiplying by gij and then summing to 

(2A+8C+D)h/,," +(2B +2E+4D)hlm,,' + ( $ - 4 p ) T = 0 .  

give 

Hence, eliminating T, 

2Ah"~',+(B+~)(hi'~'l+h"~'l)+2Clg"h~,m" +Dlg"h,m,m'+Dh;'ii+$Ti' = 0 ,  (12) 

where 

C + w ( 2 A  + D )  D +4p(B + E )  c, = , D1= 1 -8p  1 -8p  

Equations (9) and (12) must satisfy five criteria: 
(i) = 0 to at least first order in hi', hence 

(2A+B+E)h";~mm+(B+E+D~)h'm~'~m+(2C1+D)h'~~'mm = O .  (13) 

(ii) The field equation (12) is gauge invariant, and since the gauge is related to the 
coordinate displacement we change x i  by 6' and hij to hi' - [ i ; i  - 5;.,i. Hence equation 
(12 )  is unaltered if 

(2A + B + E)([i"', + [ " i ' l )  + 2 ( 8  + E  +D)i$;", + (4c1 + 2Dl)gi'5',1," = 0. (14) 
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(iii) The action integral ( 9 )  is gauge invariant. The simultaneous change of x i  and hij 
d x. If we change A2 

1/2 4 with constant bii does not alter T or the volume element ( -g )  
and integrate by parts to simplify the integral, then the change in S is 

I (-g)'l2 d4x [ ( 4 A  + 2 B  + 2E)hlm(""', + ( 2 8  + 2 E  + 2D)hlmen"mn 

+ ( 4 C  + 2D)h / [m;nmn]  = 0. 

Tosatisfy equations (13 ) ,  (14 )  and (15)  we require 2 A  = -B -E  = D  = D1 = -2C  = 
-2C1 and p = 0. Hence the action integral reduces to 

S + i M =  I [A(hlm,,h'""-2h 1m.n , h f " ~ m + 2 h ~ ~ m h m , ' " - h / ~ " h m  m ; n )  

+E(hlm;,hl";,  - hlm,,hf"'m)-$gijTi'  +IT] (-g)"2 d4x, 
J 

and the linearised field equations are 

This is the same as the linearised Einstein equations with A = c2/64?rG. 
(iv) Conversely we may recover the Lagrangian A2 by multiplying the potential 

terms of the field equation (17 )  by hij or gij  and integrating by parts with constant 6,; 
thus 

= -2 J AZ(-g)ll2 d4X, 

provided that the surface integrals are zero. Also if we change the order of derivatives 
in the second and third terms of the integrand in expression (18 )  from hi';', + hi';il to 
hi';/ + hi';/,  we could recover the term 2 h 1 ~ ; ~ h ' , ; "  instead of 2h,m,,h1"'m. This, however, 
only becomes important in the second-order terms. 

(v) A field energy-momentum tensor exists. To find this tensor we set up two 
conditions: (a) If ti' is this tensor, then the force per unit volume on the medium is tiiii. 
(b) If the medium carries a material energy-momentum tensor Ti', then the force per 
unit volume on the medium is, according to equation ( 5 )  and 0 3.1, +hik;iTik; hence 

$hjk;iTik = (19 )  

Soper (1976, p 34) and Thirring (1961, p 103) give a tensor which satisfies equation 
(19 )  but is not necessarily symmetric in i and j and is not gauge invariant, so Thirring 
immediately adopts the Hilbert gauge. To find why this may be necessary we substitute 
for' 2T ik  from the field equation (12 )  or (17 )  and write down the most general symmetric 
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tensor for tii which is constructed from the products of pairs of derivatives of hii, namely 
tii = gii(ahlm;,hlm;" + bhfm;nhf";m + ch~;"hmm,,  + dhl';"h,,'" + ehfm,,hf";,) 

+h' i ;r(fh'm;m +ghmm;f)+(hir; i  +hjr;')(hhfm;" +ih,";') 

+jh'r;mh'r;m + /&ir;mh'm,r + / (h i r ; , ,h fmc i  + hll;mhr"') 

+mh,,;'h ' fm;I +nh',;lhjm;m +P(hlf;'hmm;i +hir;'hm m i l )  +4h/;'hmmd. 

On substituting in equation (19) and collecting terms we get the identity 

(2a + m)hlm;nihfm:n + .  . . = o .  
If the 23 terms of this identity are independently zero, we have 23 equations for the 

16 constants of tii. These are incompatible, so we conclude that for tii to exist there must 
be some constraint on hii, and one possibility is a gauge condition. 

4.1. The gauge condition 

In electrodynamics we impose a gauge condition A';; = 0 which simplifies the field 
equation for A' but does not otherwise affect the value of F". In the general theory of 
fields Fierz (1939) gives a gauge condition aAik...l/axi = 0, while both Thirring (1961) 
and Cavalleri and Spinelli (1974a) use a Hilbert gauge condition h:;i = ih;;;. If we use a 
more general gauge condition 

h' 1 ; I  , = ph/ , ,  (20) 

on the potentials, then this also affects the metric, so we must show that this is possible. 
We do so by means of a theorem: 

Theorem. If hii and hi i ;k  are zero on an infinite outer boundary of a domain and 
h/,' = p h / ; ,  for fixed p, then the separation of gii into bii + hii is unique. 

Proof. Let x i *  be an arbitrary set of coordinates which are changed to x i  by a 
displacement t i ,  where ti and ti;i are zero on the outer boundary, so x i *  = x i  + ti, then 
gij* = gii -ei i l  - ti;i, and if b,j is constant then hii* = hii - 

(21) 
In order to make the left-hand side of equation (21) zero, we first differentiate 

(22) 

- tj,i. Hence 

h/;' -phi;, = h * / ; j  - ph */,' + ,Ei;', + t i ; i i  - 2pt.;'. I 1 '  

covariantly with respect to x ' ;  hence 

(2- 2 p ) 0 2 [ ' ; i  = @h*iii i i  - h*:;;, 

The wave equation (22) with boundary condition 6';; = 0 on an infinite outer 
boundary gives 8';' uniquely. 

Substitute for in equation (21), and again to make the left-hand side zero we get a 
vector wave equation 

02& = (2p - 1)t';j; +ph*/ ; ,  - h*j;j, 

with ti = 0 on the infinite outer boundary. This gives ti and hence hi' uniquely. 
The gauge condition equation (20) may also be expressed in terms of the displace- 

ments as follows: If the gauge condition equation (20) is true for both hii and hii*, then 

(23) 5.;'. 1 1  = (2p - 1)t';;j. 
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Furthermore on differentiating covariantly by x '  

(2 - 2p)5iiJ; = 0. 

4.2. The field equations with a gauge condition 

Let us impose the gauge condition on the field equations after deriving the field 
equations from the action, then the field equations (12) simplify to 

2Ah"~'1+[D+2P~B+E)]h/"'+(2C1+PDl)g''h~',," ++Ti' = O .  

For the conservation of Ti', = 0, hence 

The field equations (12) are unaltered by a displacement ti if 

2A(5';"1 + 2 [ 0  + 2P(B +E)],5'"' + 2(2C; +PDl)gi i [ i fmm = 0, 

and, because of the limitations on ti in equations (23 )  and (24), this reduces to 

[ 2 A ( 2 P -  1 ) + D + 2 P ( B + E ) ] 2 & ; ' i ' = 0 ,  

The same constraint holds for the action. There is now no constraint on w,  but as it 

If we set D+2p(B+E)=2A(1-2P),2C1+PD1=2A(P-1),p=0, and hence 
does not appear in the field equation we may ignore it. 

C1 = C, D1 = D, the field equations become 

2 A [ h i ' ~ ' i + ( 1 - 2 ~ ) h / ~ i ' + ( ~ - l ) g i ' h / , , m ] + f T i '  = O ,  (25) 

and the Lagrangian becomes 

+ B(him - hl,'"h I n i n )  
1 ;n  +2h/;mhmn;n -h/;nhm 2him;mh n 

im :n - L = A(h1, ;,h 

+ ( 2 A  +B + E ) ( p 2 h / ; n h m m ; n  -2Ph/;,hm,;" + h~m;mh'n;n)  -$gijTii ++T. 

This is the same as the Lagrangian in equation (16) without the gauge condition, 
because the second term may be made to vanish by double integration by parts and the 
third term vanishes because of the gauge condition. Furthermore the gauge condition 
may be applied wholly or partially at any stage in deriving the field equations. 

4.3. The field energy-momentum tensor 

We start with the identity (19) for the force on an element of volume, with equation (25) 
for Ti', while tii is the most general tensor symmetrical in i and j using the gauge 
condition. This is 

ti' = gi'(ahI,,,h + bhlm;nhin;m + ch/'"h 
+ghii;rh,m;l + j(hi,;l + hj,;i)hmm;l +jhi,;,hii;m + kh";"h',;, 

+ 1( h irimh ;i + hJ,,,h t i )  + mh,m;ih + qh/"hmm;'. 
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On substituting in the force identity we get 

h'm;"ihrm;fl(2a + m ) + h r m ' " ' h ~ , ; , ( 2 6 + l ) +  hir;'""hlm;,,(l+ j )  

+ h  i ' ;mnh mn ; I  ( k )  + h,' ;mih,n;m (2c + q + p g  + p i )  + hi"",h mm ;1 ( i )  

+hi"'"hrm,," ( I )  + hi';mh"n;rm(g + i + pj + p k )  + h "";'hl,;,"(m + 2 A )  

+hfm"h",;1,[ i+pl+2A(1 -2P)]+h:"hmm,,"[q+2(P- 1)A]=O. 

To make this expression vanish we require 

p = I  2, a = A ,  c = - A / 2 ,  m = - 2 A ,  q = A 

and all the other coefficients zero. Finally from the measurement of the gravity field, 
A = c2/64.rrG. 

= 0, (ii) the field is 
gauge invariant, and (iii) a field energy-momentum tensor exists, we must have a 
constraint on hi,, and if it is a linear differential constraint it must be the Hilbert 
condition 

h/ ; ,  = ;hjj;,. ( 26 )  

At the same time equations (23 )  and (24 )  reduce to 02& = 0. Then the field Lagrangian 
is 

We conclude that for a linear approximation in which (i) 

(c2/64.rrG)(hrm;,h"'" -ih:'"h - $g"T,, + i T ,  (27 )  

or 

h " " ~ + ( 1 6 ~ G / ~ ~ ) ( T " - ~ g " T )  = O ,  

and the field energy-momentum tensor is 

(29 )  t'' = ( ~ ~ / 6 4 ~ G ) [ g " ( h l , , , h " ' "  - ih / ' "hmm, , )  - 2hlm"h 1m.I + h:.lhmmsl . 
Furthermore the gauge condition (26 )  may be used to change some of the terms in 

equations (27) ,  (28 )  and (29 ) .  

5. The second-order approximation and Einstein's equation 

If we take a purely quadratic Lagrangian as given by equations ( 8 )  and ( 9 )  and derive the 
full Euler condition in equation (10) for an extremal, we find that the resulting field 
equations contain some non-vanishing quadratic terms as well as the linear terms. If we 
then proceed to work back from these field equations to derive the action by multiplying 
the terms other than Ti' in the field equations by gii and integrating by parts where 
necessary to find the action, we find new cubic terms in addition to the original quadratic 
terms. 

The problem of finding a pair of tensor functions which satisfy this double condition 
in addition to being gauge invariant has already been solved in Einstein's equations. Let 

(30 )  8 1/2 4 s = g c L y ( r e y u r u 8  -re8urvu8)(--g) d X ,  I 
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then the Euler condition for an extrema1 is Einstein's field equation (see Misner et a1 
1973, p 418) 

R@' -$Rg@" = (~TG/C*)T@' .  
1 Conversely Landau and Lifschitz (1975, p 269) show that z s  g,,(R@" - 

f R g @ " ) ( - g )  d x can be simplified to S of equation (30). Cavalleri and Spinelli (1975) 
have found more general field equations, but conclude that the additional terms are 
unobservable to second order. 

1 / 2  4 

5.1. The second-order tensor Lagrangian derived from Einstein's Lagrangian 

The covariant derivative of h,, is given by the equation 

hjj;k = hjj,k - hi,I'z- hair$. 

Therefore 

G i j , k  =i(hik;j+hjk;i -hij;k) 

= &hik,j + hjk,j - hij,k) - hakr; 

= rj j ,k  - hakr; 

if bii is constant. 
Inverting this equation to second order in hii, 

r j j , k  = Gi,,k + hzG,j,, +O(hij)3. 

We can now substitute for the Christoffel symbols in equation (30) and simplify to 
second order to obtain 

s = I a(-g)  1 / 2  d 4 x{hfm;nhfm;n  -2hrm;nh'n;m +2h/'mhmn;n -h/;,hmmin 

+ huB[-2ha~;-hfm;p +2hfm;,hIm;p - 2 h ~ l ; m h ' ~ ; ~  + h / ' " ( 2 h ~ m ; ~  - hmm;p) 

+ h,8,1(2h',;~ - hmm;')]}, 

and with the Hilbert gauge condition equation (26)  this further simplifies to 
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6. The approximate solution for a solid sphere 

The first-order gravitational field equations are 

lJ2h ii + ( 16rG/c  ’)(Ti’ - $ g  i’T) = 0, hiiii = ih;;,, 

where Too = pc2 ( r  < a ) ,  otherwise Ti’ = 0, with boundary conditions: hi’ is zero at 
r = 00, finite at r = 0, and continuous with continuous derivatives at r = a. 

If we use spherical polar coordinates for the background metric and solve for a 
spherically symmetric metric 

d s 2 = c 2 e A  dt2-ep dr2-r2e’(d82+sin2 ed4‘), 

where A, p and v are small and functions of r, then to a first approximation hoo = c2A, 
h l l  = -p, hz2 = -r  v, and h33 = -r2v sin2 8. 

We can then use the zero-order wave equation to find the first-order approximation 

2 

( - 1 ,  1 ,  1 )GM(3a2-r2 ) / c2a3 ,  r C a  i ( - 1 ,  1 ,  1)2GM/c2r, r > a .  (A,  P,  v )  = 

This solution agrees with the first-order approximation to the homogeneous solu- 
tion of Einstein’s equations and is in conflict with the Schwartzchild solution. 

It should be noted that in two of the field equations and in the gauge condition there 
is a factor ( p  - v ) / r  or (p - v ) / r 2 ,  and this factor becomes singular at the origin of r 
unless the constant parts of p and v are equal. In the complete solution p = v 
everywhere, so the solution is homogeneous in the spatial coordinates. Also in the 
point particle solution this singular detail in the interior of the sphere is concealed in the 
monopole singularity for the point particle. 

6.1. The field energy-momentum tensor 

By substituting the sphere solution into equation (29) we find that 

tii=%[ 8 r c  a r z  ] and 4rc2a6 ’ 

2 
-C 

GM2r2 
t! = - r < a ,  

r2 sin e 
while 

t . .  = - 

r2  sin2 e 
and 

G M 2  t.‘ = -- 
4 r c  ’r4 ’ 

r ) a .  

Hence the total kinetic energy of the field is 5 too d3x integrated over all space. This is 
-3GM2/5a,  which is negative and equal to the energy lost when the mass of the sphere 
is condensed under its own gravitation from infinity. Furthermore the total energy is 
c 2  5 t: d3x integrated over all space. This includes the stress energy and is double the 
kinetic energy and negative. 

From the above energy-momentum tensor we also conclude that the stress field 
consists of a positive radial pressure and negative transverse pressures, and the resultant 
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radial thrust on an element of volume is t 1 j i j ,  where 

0, r > a  
-6 GM2 r/4 TC a 6,  r < a .  

t l i ; ,  = 

Thus the space outside the sphere is in equilibrium under the radial and transverse 
stresses, whereas the resultant force is inward inside the sphere and must be balanced by 
other non-gravitational forces if the sphere is in static equilibrium. 

7. Conclusion 

A tensor field theory of gravity may be preferable to a geometric theory because of its 
similarity to the nuclear and electromagnetic field theories. 

It is shown here that such a theory can be developed using mechanical principles, 
and this leads to the same equations as were found using geometric principles. 

The tensor theory has a number of similar features to vector electromagnetic field 
theory, and a number of important differences associated with the close link between 
the tensor potential and the metric tensor. Indeed this link makes a force-free 
geometric theory possible because bij and hii can be combined into a single gij and so the 
tensor potential equations may be interpreted as describing geodesics in a curved space. 

It is implicit in the geometric theory that this link between bii and hij cannot be 
separated, and this is so in the equations of motion of a particle. 

However, we find in the tensor theory that a field energy-momentum does not exist 
for an arbitrary metric but does exist when the metric satisfies the Hilbert gauge 
condition. This metric is then uniquely related to the metric in some distant outer 
region, assumed here to be a Minkowski metric, and is in some way a preferred metric. 

In the case of the field round a static sphere the preferred metric is isotropic in the 
space coordinates. 

Appendix 1. Some properties of tensors 

(i) The commutation law for second derivatives of a tensor is similar to that for a 
vector, namely 

h i j ; k l  - h ij ; ik  = hpiR ‘iki + hipRPjki, 

where RPiki is the Riemann curvature tensor 

a a 
- r; - --i r yk + r;r;k - rir  ;,. ax ax 

If gij = bij + hii, where bij is the Minkowski metric tensor and hij is small, then RPikl is 
comparable in size with hij, so the difference between the two covariant second 
derivatives of hii is comparable with (hii)’. 

(ii) Gauss’s theorem: 
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(iii) The rule for interchanging derivatives: 

(him,,h,",, - him,mhl,'")(-g) d x 1 / 2  4 

1 / 2  4 
= I, hr"(h";mn -h"";nm)(-g) d x + him;,hr" dSm - him;mhr" dSn. LRm I,. 

If the surface integrals vanish and the curvature tensor is comparable with hii, then the 
change in the integral due to interchanging the derivatives is comparable with (hij)3. 

(iv) The Euler condition for extremalising with respect to a tensor: If S =  
I A(-g) d x, where A = A(Aap,.,s, A a p  ... s;,), then Soper (1976, p 189) shows that the 
Euler condition for an extrema1 has a covariant form 

1 / 2  4 

However, if the metric tensor is also a function of the tensor potential, g,,= 
b,, + h,,, g = det(g,,) and A = Ng," ,  h,,, hA,;v), then 

and the covariant form of Euler's equation reduces to 

Appendix 2. Local and distant observations 

An example of a local phenomenon is the motion of a particle as described by equations 
(2), (3) or (4) or the physical measurement of a time or distance using the metric 
equation ds = g,, dx" dx'. In these equations the gravitational potential is an 
unobservable part of the metric tensor. 

A third local phenomenon is the measurement of the velocity of light. If standard 
clocks measure dslc when ds2 is positive, while standard rods measure i ds when ds2 is 
negative, then in terms of local time T and local lengths X, Y, Z the metric equation can 
be transformed to 

2 

ds2 = c2  d T 2  - dX2 - d Y2 - dZ2 ,  

and in particular for the null geodesic, ds2 = 0, so c2  = (dX2 + d Y2 + dZ2)/dT2.  Hence 
the fundamental velocity c is the same for all observers in any direction with any 
acceleration anywhere in a gravitational field provided it is measured with local 
standardised rods and clocks. 

These are examples of the general postulate that local observers are unable to detect 
any gravitational effects or preferred metrics or preferred directions in space. 

On the other hand there are a number of distant observations which enable us to 
measure variations in the gravitational field: 
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Let the metric for the neighbourhood of the sun in polar background coordinates 
0, r, 8 )  be 

ds2 = goo dt2 + gll  dr2 + gZ2 de2 

=c2(1 -2a / r+ .  ..) dt2-(1+2b/r+ . . . ) d r 2 - ( r 2 + 2 d r + . . . ) d 8 ’  

where a, b and d are constants. 
(i) If we measure the accelerations of falling bodies in different places near the sun, 

we cannot distinguish between a constant acceleration and a constant force field but we 
can observe a non-uniform residual which enables us to determine the constant a. 

(ii) We may compare distant clocks. If two observers P1 and P2 at rl and r2 time the 
same physical process with their own local clocks, and during the process they remain 
relatively stationary while only the parameter t alters, then the time recorded by P1 is 
dsl/c and the time recorded by P2 is dsz/c, where 

This is a second method for calculating goo or a. 
(iii) The bending of light is a distant process. The deflection of a light ray passing 

within a distance R of the centre is 2(a + b ) / R .  
(iv) The number of wavelengths of light in a light path is an invariant for all 

observers. For a light path from radius rl passing within a radius ro of the centre and 
continuing to radius r2  beyond the nearpoint, the time parameter t along the path is 

The constant d in this equation is related to the radial parameter r in such a way as to 
make this independent of the choice of radial parameter. Hence this measurement only 
measures d if r and t are appropriately defined. 
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